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Abstract
Two-mode nonlinear interaction (second-harmonic and

second-subharmonic generation) in a planar waveguide
with a small periodic corrugation at the surface is stud-
ied. Scattering of the interacting fields on the corruga-
tion leads to field localization that enhances the nonlin-
ear process provided that all the interactions are phase
matched. Conditions for the overall phase matching are
found. Compared with a perfectly quasi-phase matched
waveguide, better values of squeezing as well as higher
intensities are reached under these conditions. In pulsed
regime, eigenmodes suitable for squeezed-light generation
have been found.

I. INTRODUCTION

Since the pioneering work by Armstrong [1] on the pro-
cess of second-harmonic generation has occurred, spatio-
temporal properties of the nonlinearly interacting clas-
sical fields have been studied in detail by many authors
both theoretically and experimentally. A new impulse in
these studies has occurred when people understood that
this process can give rise to the fields with nonclassical
properties (for a review, see, e.g. [2–5]). Namely light
with electric-field amplitude fluctuations suppressed be-
low the limit given by quantum mechanics [6] can be gen-
erated both in the pump and second-subharmonic fields.
Also light with nonclassical photon-number statistics can
be obtained - pairwise character of photon-number statis-
tics [7, 8] generated in the spontaneous process of second-
subharmonic generation has been observed [9].

It has been shown that the best conditions for
squeezed-light generation in homogeneous nonlinear me-
dia occur, provided that the nonlinear two-mode interac-
tion is perfectly phase matched. Under these conditions,
the principal squeeze variance of the second-subharmonic
field can asymptotically reach zero when the gain of the
nonlinear interaction increases. On the other hand, the
pump-field principal squeeze variance cannot be less than
0.5 [10]. If large values of the nonlinear phase mismatch
are allowed, this limit can be overcome due to a nonlinear
phase modulation, as suggested in [11, 12]. However, the
generated signal is very weak.

The most common method how to compensate for
the natural nonlinear phase mismatch that occurs in
commonly used nonlinear materials is to introduce an
additional periodic modulation of the χ(2) susceptibil-
ity using periodical poling [13–15]. Several methods
for the additional modulation of the local amplitude of
this quasi-phase-matched interaction have been devel-
oped [16]. These methods allow to reach a spectrally
broad-band two-mode interaction and so femtosecond
pumping of the nonlinear process is possible [17].

In order to effectively increase low values of the nonlin-
ear interaction in real materials, configurations in which
a nonlinear medium is put inside a cavity are usually used
to generate squeezed light (e.g. [6, 18]).

In a waveguiding geometry that profits from a strong
spatial localization of the interacting optical fields re-
sulting in high values of the effective nonlinearity, an-
other method to reach a nonlinear phase mismatch is
possible. One of the nonlinearly interacting fields can be
coupled through its evanescent waves into another field of
the same frequency propagating in a neighbouring waveg-
uide. An exchange of energy between these two linearly
coupled fields introduces a spatial modulation of the non-
linearly interacting field that can be set to compensate for
the nonlinear phase mismatch [19]. Interaction of fields in
different waveguides through their evanescent waves can
be used in various configurations that modify nonclassi-
cal properties of optical fields emerging from nonlinear
interactions [20].

A waveguiding geometry allows another possibility to
tailor the nonlinear process - a linear periodic corruga-
tion of the waveguide surface can be introduced lead-
ing to scattering of the propagating fields [21, 22]. Spa-
tial distributions of the electric-field amplitudes of the
nonlinearly interacting fields are modified this way and
higher conversion efficiencies of the nonlinear process can
emerge [23, 24]. Also squeezed-light generation is sup-
ported in this geometry, as discussed in [25] where scat-
tering of the second-harmonic field on the corrugation has
been neglected. A waveguiding geometry with a periodic
corrugation can also be conveniently used for second-
harmonic generation in Čerenkov configuration [26]. A
general model of squeezed-light generation in nonlinear
photonic structures has been developed in [27].

In the pulsed regime and travelling-wave configura-
tion, squeezed-light generation in the considered nonlin-
ear interaction has been studied with the help of phase-
space quasi-distributions or the corresponding Langevin
stochastic equations [28]. It has also been shown that
there exist correlations between intensities of the inter-
acting fields in their transverse planes [29, 30]. A local
oscillator in the form of an ultrashort optical pulse is
needed to observe pulsed squeezing experimentally. The
effort to observe the largest possible values of squeez-
ing has raised the question about an optimum shape
of the local-oscillator field [31, 32]. A general method
how to solve this problem is to use the Bloch-Messiah
reduction of the Green functions characterizing the lin-
earized operator amplitude evolution [33]. This method
has been elaborated in detail in [34, 35] for degener-
ate parametric down-conversion in a BBO crystal and
also relation between the Bloch-Messiah reduction and
Schmidt decomposition of a two-photon amplitude char-
acterizing spontaneous parametric down-conversion has
been found. Mode structure of nonclassical states aris-
ing from squeezed states after post-selection using on/off
detectors has been analyzed in [36].

In this report, we show that scattering of the inter-
acting fields caused by a linear periodic corrugation sup-
ports the generation of squeezed light in both the pump
and second-subharmonic fields provided that at least one
of the interacting fields is spatially localized as a conse-



3

quence of scattering. We note that spatial localization
of optical fields in this case is weak in comparison with
that occurring in layered photonic band-gap structures
[37–39].

The report is organized as follows. In Sec. II, a quan-
tum model of the nonlinear interaction including both
Heisenberg equations for operator electric-field ampli-
tudes and model of a generalized superposition of signal
and noise are presented for cw pumping. Conditions for
an efficient squeezed-light generation are derived in Sec.
III. A detailed analysis of a waveguide made of LiNbO3

is contained in Sec. IV considering cw pumping. Gener-
alization of the model to the case of multi-mode fields is
given in Sec. V. Assuming a linear corrugation present
in the strong pump field and weak nonlinear interaction
and relying on perturbation approach, eigenmodes of the
generated pulsed second-subharmonic field are found in
Sec. VI. Neglecting frequency dependence of the coupling
constants and inter-mode dispersion, the corresponding
equations for operator amplitudes are solved in Sec. VII.
Numerical analysis of the principal squeeze variances of
characteristic eigenmodes is contained in Sec. VIII. Con-
clusions are drawn in Sec. IX. Appendix A is devoted
to mode analysis of an anisotropic planar waveguide. An
optimum mode profile with respect to pulsed squeezing
is found in Appendix B.

II. CW MODEL OF THE NONLINEAR
INTERACTION

An overall electric-field amplitude E(r, t) describing
an optical field in the considered anisotropic nonlinear
waveguide (shown in Fig. 1) [40] is composed of two
contributions; pump (or fundamental) electric-field am-
plitude Ep(r, t) at frequency ω and second-subharmonic
electric-field amplitude Es(r, t) at frequency ω/2; i.e.
E = Ep + Es. We note that in case of second-harmonic
generation, the field with the amplitude Ep(r, t) is called
second-harmonic and that with the amplitude Es(r, t)
is known as pump. We keep the terminology used for
second-subharmonic generation throughout the report.
The electric-field amplitude E obeys the wave equation
inside the waveguide with a nonlinear source term [41]:

∆E−∇(∇ ·E)− µε0ε · ∂2E
∂t2

= µ
∂2Pnl

∂t2
. (1)

In Eq. (1) µ denotes vacuum permeability, ε0 vacuum
permittivity, and Pnl describes nonlinear polarization of
the medium. The symbol ∆ stands for Laplace opera-
tor, (·) means a scalar product, and · denotes tensorial
multiplication. Every spectral component of the element
εij(r, ω) of the relative permittivity tensor in the consid-
ered waveguide can be expressed as follows:

εij(x, y, z, ω) = ε̄ij(x, y, ω) [1 + ∆εij(x, y, z, ω)] . (2)

Small variations of permittivity ε described by
∆εij(x, y, z, ω) are induced by a periodic corrugation of

FIG. 1: Four optical fields interact in a nonlinear waveguide
of thickness t and length L with a periodically-poled (pe-

riod Λnl) χ(2) susceptibility; ApF , ApB , AsF , and AsB mean
forward-propagating pump, backward-propagating pump,
forward-propagating second-subharmonic, and backward-
propagating second-subharmonic electric-field amplitudes, re-
spectively. A linear corrugation with depth tl and period Λl

is fabricated on the waveguide upper surface. Profile of the
waveguide in the x − y plane is rectangular with width ∆y
and depth t; ∆y À t is assumed. The waveguide is made of
LiNbO3 with the optical axis oriented along the x axis.

the waveguide surface. These variations of the elements
∆εij(x, y, z, ω) along the z axis can be conveniently de-
composed into harmonic waves:

∆εij(x, y, z, ω) =
∞∑

q=−∞
εij,q(x, y, ω) exp

[
iq

2π

Λl
z

]
, (3)

where εq,ij are coefficients of the decomposition and Λl

is a period of the linear corrugation. Amplitude of the
nonlinear polarization Pnl of the medium is determined
using tensor d of the second-order nonlinear coefficient:

Pnl(r, t) = 2ε0d(r) ·E(r, t)E(r, t). (4)

Taking into account geometry of our waveguide elements
dijk(r) of the nonlinear coefficient can be expressed as
follows:

dijk(x, y, z) =
∞∑

q=−∞
dijk,q(x, y) exp

[
iq

2π

Λnl
z

]
, (5)

where Λnl describes the period of a possible periodical
poling of the nonlinear material.

The electric-field amplitudes of pump (Ep) and second-
subharmonic (Es) monochromatic waves can be ex-
pressed in the form:

Ea(x, y, z, t) = i [AaF
(z)ea(x, y) exp(iβaz − iωat)

+ AaB (z)ea(x, y) exp(−iβaz − iωat)
−H.c.] , a = p, s, (6)

where the symbols ep and es refer to mode functions in
the transverse plane of the beams. Amplitudes ApF

and
AsF [ApB and AsB ] describe forward- [backward-] propa-
gating pump and second-subharmonic fields and are such
that the quantities |ApF |2, |ApB |2, |AsF |2, and |AsB |2
give directly the number of photons in these fields. Sym-
bol βa means a propagation constant along the z axis in
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mode a whereas ωa stands for frequency of this mode.
Symbol H.c. replaces hermitian conjugated terms. We
note that the considered anisotropic waveguide supports
only TM guided modes; TE modes are not guided and
thus do not contribute significantly to nonlinear interac-
tion.

Mode functions ep and es describe the transverse pro-
files of pump and second-subharmonic fields, respectively,
and fulfill the following equations:

∇× (∇× [ea(x, y) exp(±iβaz − iωat)])

− ω2
s

c2
ε̄ij(x, y, ωa) · [ea(x, y) exp(±iβaz − iωat)] = 0,

a = p, s. (7)

We note that mean values of permittivities ε̄ij(x, y, ωa)
are used for the determination of mode functions. The
mode functions ep and es are normalized to describe one
photon in a mode inside the waveguide (see Appendix
A).

Substitution of Eqs. (2-6) into Eq. (1) assuming∣∣∣∂2Aab

∂z2

∣∣∣ ¿
∣∣∣βa

∂Aab

∂z

∣∣∣ for a = p, s and b = F, B (analog
of the slowly-varying envelope approximation to spatial
evolution) results in the following equations for ampli-
tudes ApF

, ApB
, AsF

, and AsB
:

dAsF

dz
= iKs exp(−iδsz)AsB

+ 4Knl,q exp(iδnl,qz)ApF
A∗sF

,

dAsB

dz
= −iK∗

s exp(iδsz)AsF

− 4Knl,q exp(−iδnl,qz)ApB
A∗sB

,

dApF

dz
= iKp exp(−iδpz)ApB

− 2K∗
nl,q exp(−iδnl,qz)A2

sF
,

dApB

dz
= −iK∗

p exp(iδpz)ApF

+ 2K∗
nl,q exp(iδnl,qz)A2

sB
. (8)

Because the waveguide is made of an anisotropic ma-
terial, also the following relation has to hold in order to
derive correctly equations in Eq. (8) (for details, see [41]):

d2Aab
(z)

dz2
[ea(x, y)]z exp(±iβaz) z

+
dAab

(z)
dz

∇ ([ea(x, y)]z exp(±iβaz))

+
dAab

(z)
dz

(∇ · [ea(x, y) exp(±iβaz)]) z ≈ 0,

a = p, s, b = F, B, (9)

and z stands for a unit vector along the z axis. We note
that Eqs. (8) describe also a nonlinear coupler composed
of two waveguides made of χ(2) media whose modes in-
teract through evanescent waves. Nonclassical properties
of light propagating in this coupler have been studied in

[42, 43]. A scheme that allows to decompose interactions
in this coupler into a sequence of fictitious interactions
has been suggested in [44].

Phase mismatches δs, δp, and δnl,q occurring in Eq. (8)
are given as follows:

δa = 2βa − 2π

Λl
, a = p, s,

δnl,q = βp − 2βs + q
2π

Λnl
. (10)

Coefficient q equals ±1 for a periodically poled nonlinear
material, whereas q = 0 for a material without period-
ical poling. Linear coupling constants Kp and Ks are
determined along the expressions:

Ka =
ω2

a

2c2βa

∫
dxdy ε1(x, y, ωa) · e∗a(x, y)ea(x, y)∫

dxdy |ea(x, y)|2 ,

a = p, s. (11)

Similarly, the following expression can be found for non-
linear coupling constants Knl,q for q = 0,±1:

Knl,q =
2iω2

s

c2βs

∫
dxdy dq(x, y) · ep(x, y)e∗s(x, y)e∗s(x, y)∫

dxdy |es(x, y)|2

≈ 2iω2
p

c2βp

∫
dxdy dq(x, y) · ep(x, y)e∗s(x, y)e∗s(x, y)∫

dxdy |ep(x, y)|2 .

(12)

The last approximate equality in Eq. (12) is valid pro-
vided that ωs/βs ≈ ωp/βp and due to the normalization
of the mode functions es and ep. This approximation as-
sures, that only one nonlinear coupling constant occurs
in Eqs. (8) which is important in quantum description.

Expressions for linear (Ks, Kp) and nonlinear (Knl,0,
Knl,1) coupling constants appropriate for the considered
waveguide and derived from Eqs. (11) and (12) can be
found in Appendix A in Eqs. (A10-A12).

Quantum model of the nonlinear interaction in the con-
sidered waveguide can be formulated changing the clas-
sical envelope electric-field amplitudes ApF , ApB , AsF ,
and AsB

occurring in Eq. (6) into operators denoted as
ÂpF , ÂpB , ÂsF , and ÂsB , respectively. A quantum ana-
log of the classical equations written in Eq. (8) can then
be derived from the Heisenberg equations (for details, see
[45, 46];

dX̂

dz
= − i

h̄

[
Ĝ, X̂

]
; (13)

considering the following momentum operator Ĝ:

Ĝ =
[
h̄Ks exp(−iδsz)Â†sF

ÂsB

+h̄Kp exp(−iδpz)Â†pF
ÂpB

+ H.c.
]

−
[
2ih̄Knl,q exp(iδnl,qz)Â†2sF

ÂpF

+2ih̄Knl,q exp(−iδnl,qz)Â†2sB
ÂpB

+ H.c.
]
,(14)
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where q = 0 or q = ±1. In Eq. (13), h̄ means the reduced
Planck constant, X̂ stands for an arbitrary operator and
symbol [, ] denotes commutator.

The operator quantum equations analogous to those
written in Eq. (8) can be solved using the method of
a small operator correction (denoted as δÂ) to a mean
value (denoted as A) in which an electric-field opera-
tor amplitude Â is decomposed as Â = A + δÂ. This
method provides a set of classical nonlinear equations for
the mean values A that coincides with the set given in
Eq. (8). The operator electric-field amplitude corrections
δÂ fulfill the following linear operator equations:

dδÂsF

dz
= KsδÂsB

+KF,q

[
ApF

δÂ†sF
+ A∗sF

δÂpF

]
,

dδÂsB

dz
= K∗sδÂsF

−KB,q

[
ApB

δÂ∗sB
+ A∗sB

δÂpB

]
,

dδÂpF

dz
= KpδÂpB

−K∗F,qAsF
δÂsF

,

dδÂpB

dz
= K∗pδÂpB

+K∗B,qAsB
δÂsB

. (15)

Functions Ks, Kp, and Knl,q introduced in Eqs. (15) are
defined as:

Ka = iKa exp(−iδaz), a = s, p,

KF,q = 4Knl,q exp(iδnl,qz),
KB,q = 4Knl,q exp(−iδnl,qz). (16)

Solution of the classical nonlinear equations written in
Eqs. (8) can only be reached numerically using, e.g., a
finite difference method called BVP [47]. This method
requires an initial guess of the solution that can be con-
veniently obtained when the nonlinear terms in Eqs. (8)
are omitted. Then, the initial solution can be written as
follows:

A(0)
aF

= exp
(
−i

δaz

2

) [
Ba cos(∆az) + B̃a sin(∆az)

]
,

A(0)
aB

= exp
(

i
δaz

2

)

×
[
Ba

(
− δa

2Ka
cos(∆az) + i

∆a

Ka
sin(∆az)

)

+B̃a

(
− δa

2Ka
sin(∆az)− i

∆a

Ka
cos(∆az)

)]
,

a = s, p, (17)

and

∆a =

√
δ2
a

4
− |Ka|2, a = s, p. (18)

In Eqs. (17), constants Bp, B̃p, Bs, and B̃s are set ac-
cording to the boundary conditions at both sides of the
waveguide.

We note that any solution of the nonlinear equations in
Eqs. (8) obeys the following relation useful in a numerical
computation:

d

dz

(|AsF
|2 + 2|ApF

|2 − |AsB
|2 − 2|ApB

|2) = 0. (19)

The solution of the system of linear operator equations
in Eqs. (15) for the operator electric-field amplitude cor-
rections δÂ can be found numerically and put into the
following matrix form:

(
δÂF,out

δÂB,in

)
=

(UFF UFB

UBF UBB

)(
δÂF,in

δÂB,out

)
, (20)

where

δÂF,in =




δÂsF
(0)

δÂ†sF
(0)

δÂpF
(0)

δÂ†pF
(0)


 , δÂF,out =




δÂsF
(L)

δÂ†sF
(L)

δÂpF
(L)

δÂ†pF
(L)


 ,

δÂB,in =




δÂsB
(L)

δÂ†sB
(L)

δÂpB
(L)

δÂ†pB
(L)


 , δÂB,out =




δÂsB
(0)

δÂ†sB
(0)

δÂpB
(0)

δÂ†pB
(0)


(21)

and L means length of the waveguide. Matrices UFF ,
UFB , UBF , and UBB are determined using numerical so-
lution of Eqs. (15).

The following input-output relations among the oper-
ator amplitude corrections δÂ,

(
δÂF,out

δÂB,out

)
=

(UFF − UFBU−1
BBUBF UFBU−1

BB

−U−1
BBUBF U−1

BB

)

×
(

δÂF,in

δÂB,in

)
(22)

= U
(

δÂF,in

δÂB,in

)
, (23)

are found solving Eqs. (21) with respect to vectors
δÂF,out and δÂB,out. The output operator electric-field
amplitude corrections contained in vectors δÂF,out and
δÂB,out obey boson commutation relations provided that
the input operator electric-field amplitude corrections
given in vectors δÂF,in and δÂB,in are ruled by boson
commutation relations. We note that also certain com-
mutation relations among the operator electric-field am-
plitude corrections in vectors δÂF,out and δÂB,in can be
derived (for details, see [46]).

We restrict our considerations to states of optical fields
that can be described using the generalized superposition
of signal and noise [2]. Thus coherent states, squeezed
states as well as noise can be considered. Parameters
Bj , Cj , Djk, and D̄jk defined below are sufficient for the
description of any state of a two-mode optical field in this
approximation [20]:

Bj = 〈∆Â†j∆Âj〉,
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Cj = 〈(∆Âj)2〉,
Djk = 〈∆Âj∆Âk〉, j 6= k,

D̄jk = −〈∆Â†j∆Âk〉, j 6= k; (24)

∆Âj = Âj − 〈Âj〉; symbol 〈 〉 denotes the quantum
statistical mean value. Expressions for the coefficients
Bj , Cj , Djk, and D̄jk appropriate for outgoing fields can
be derived [46] using elements of matrix U given in Eq.
(23) and incident values of coefficients Bj,in,A and Cj,in,A
related to anti-normal ordering of field operators (for de-
tails, see [20]):

Bj,in,A = cosh2(rj) + nch,j ,

Cj,in,A =
1
2

exp(iϑj) sinh(2rj). (25)

In Eq. (25), rj stands for a squeeze parameter of the
incident j-th field, ϑj means a squeeze phase, and nch,j

stands for a mean number of incident chaotic photons.
Coefficients Djk,in,A and D̄jk,in,A for an incident field are
considered to be zero, i.e. the incident fields are assumed
to be statistically independent.

The maximum attainable value of squeezing of electric-
field amplitude fluctuations is given by the value of a
principal squeeze variance λ [2]. Both single-mode prin-
cipal squeeze variances λj and compound-mode principal
squeeze variances λij (characterizing an overall field com-
posed of two other fields) can be determined in terms of
coefficients Bj , Cj , Djk, and D̄jk given in Eq. (24) (for
details, see, [2, 20]):

λj = 1 + 2[Bj − |Cj |], (26)
λjk = 2

[
1 + Bj + Bk − 2<(D̄jk)

−|Cj + Ck + 2Djk|] ; (27)

symbol < means the real part of an expression. Values
of the principal squeeze variance λj (λjk) less than one
(two) indicate squeezing in a single-mode (compound-
mode) case.

III. SUITABLE CONDITIONS FOR
SQUEEZED-LIGHT GENERATION

It occurs that there exist two conditions for an ef-
ficient squeezed-light generation. The first condition
comes from the requirement that the nonlinear interac-
tion should be phase-matched along the whole waveguide,
whereas the second one gives optimum conditions for the
localization of interacting optical fields.

A. Overall phase-matching of the nonlinearly
interacting fields

Conditions for an optimum phase-matching of the in-
teracting fields can be revealed, when we write the dif-
ferential equation for the number Na of photons in field

a; Na = A∗aAa. Using Eqs. (8) we arrive at the following
differential equations:

dNsF

dz
= −2={

Ks exp(−iδsz)A∗sF
AsB

}

+ 8<{
Knl,q exp(iδnl,qz)A∗2sF

ApF

}
,

dNsB

dz
= −2={

Ks exp(−iδsz)A∗sF
AsB

}

− 8<{
Knl,q exp(−iδnl,qz)A∗2sB

ApB

}
,

dNpF

dz
= −2={

Kp exp(−iδpz)A∗pF
ApB

}

− 4<{
Knl,q exp(iδnl,qz)A∗2sF

ApF

}
,

dNpB

dz
= −2={

Kp exp(−iδpz)A∗pF
ApB

}

+ 4<{
Knl,q exp(−iδnl,qz)A∗2sB

ApB

}
; (28)

symbol = denotes the imaginary part of an expression.
We note that the first terms on the right-hand side of
the first and the second (as well as the third and the
fourth) equations in Eqs. (28) have the same sign because
of counter-propagation of the fields [see also Eq. (19)].
The nonlinear interaction described by the second terms
on the right-hand sides of Eqs. (28) is weak and so we can
judge the contribution of these terms using a perturba-
tion approach. In the first step we neglect the nonlinear
terms in Eqs. (8) and solve Eqs. (8) for field amplitudes
A

(0)
sF , A

(0)
sB , A

(0)
pF , and A

(0)
pB . Then we insert this solution

into the nonlinear terms in Eqs. (28) and find this way
optimum conditions that maximize contributions of these
terms. The solution for amplitudes A

(0)
sF , A

(0)
sB , A

(0)
pF , and

A
(0)
pB coincides with that written in Eqs. (17) as an initial

guess for numerical solution and we rewrite it into the
following suitable form:

A(0)
aF

(z) = exp
(
−i

δaz

2

)

× [B+
aF

exp(i∆az) + B−aF
exp(−i∆az)

]
,

B+
aF

=
Ba − iB̃a

2
,

B−aF
=

Ba + iB̃a

2
,

A(0)
aB

(z) = exp
(

i
δaz

2

)

× [B+
aB

exp(i∆az) + B−aB
exp(−i∆az)

]
,

B+
aB

=
−δa + 2∆a

4Ka
(Ba − iB̃a),

B−aB
=
−δa − 2∆a

4Ka
(Ba + iB̃a), a = p, s.

(29)

Provided that a linear corrugation is missing in field a

the solution for amplitudes A
(0)
aF and A

(0)
aB can be obtained

from the expressions in Eqs. (29) using a sequence of two
limits; δa → 0, Ka → 0:

A(0)
aF

(z) = Ba,
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A(0)
aB

(z) = B̃a. (30)

Interaction between the forward-propagating fields is
described in Eqs. (28) in our perturbation approach by
the term

<
{

Knl,q exp(iδnl,qz)A(0)
sF

∗2
A(0)

pF

}
(31)

that, after substituting the expressions for amplitudes
A

(0)
sF and A

(0)
pF from Eqs. (29), splits into the following

eight terms:

<
{

Knl,qB±sF

∗B±sF

∗B±pF

× exp(i[δnl,q + δs − δp/2∓∆s ∓∆s ±∆p]z)
}

.(32)

The nonlinear interaction is efficient under the condition
that one of these terms does not oscillate along the z
axis. This gives us eight possible conditions that com-
bine nonlinear phase-mismatch δnl,q and parameters of
the corrugation δs, δp, Ks, and Kp:

δnl,q + δs − δp/2∓∆s ∓∆s ±∆p = 0. (33)

It depends on a given waveguide and initial conditions
which out of these eight conditions leads to an efficient
nonlinear interaction. We note that the conditions in
Eq. (33) are valid also for the nonlinear interaction be-
tween the backward-propagating fields characterized by

the term <
{

Knl,q exp(−iδnl,qz)A(0)
sB

∗2
A

(0)
pB

}
in Eqs. (28).

We consider two special cases in which a linear cor-
rugation is present either in the pump or the second-
subharmonic field. Assuming the linear corrugation in
the pump field the conditions in Eq. (33) get the form:

δnl,q − δp/2±∆p = 0. (34)

Sign - (+) is suitable for δnl,q > 0 (δnl,q < 0) when we
solve Eq. (34) for δp:

δp = δnl,q +
|Kp|2
δnl,q

; (35)

i.e. δnl,q and δp have the same sign. The expression in
Eq. (35) then determines the period Λl of linear corruga-
tion:

Λl =
π

βp − δnl,q/2− |Kp|2/(2δnl,q)
. (36)

On the other hand, the conditions

δnl,q + δs/2∓∆s ∓∆s = 0 (37)

are suitable for the linear corrugation in the second-
subharmonic field. When δnl,q > 0 (δnl,q < 0) signs -
(+) in Eq. (37) are appropriate and we have:

δs = −δnl,q

2
− 2|Ks|2

δnl,q
; (38)

i.e. δnl,q and δs have opposite signs. The period Λl of
linear corrugation is then given as

Λl =
π

βs + δnl,q/4 + |Kp|2/δnl,q
. (39)

B. Localization of the interacting fields

If we have considered a waveguide with the linear cor-
rugation so deep that it touches the bottom of the waveg-
uide, we would have a layered structure with band-gaps
and transmission peaks. If a field frequency lies in a
transmission peak, the field is also well localized inside
the structure [37]. The considered waveguide with a weak
linear corrugation behaves qualitatively in the same way
[23]. The areas of transparency of the waveguide are con-
venient for the nonlinear interaction because of the field
localization (though very weak for a weak corrugation).
A transmission peak of the waveguide can be found from
the condition that a backward-propagating field is zero
both at the beginning and at the end of the waveguide,
because it is not initially seeded. These requirements are
fulfilled by the solution in Eqs. (17) under the following
conditions:

∆a =
mπ

L
, m = 1, 2, . . . ;

Ba = A(0)
aF

(0); B̃a =
iδa

2∆a
Ba, a = p, s. (40)

Natural number m counts areas of transmission.
The linear phase mismatch δa is determined from the

first equation in Eqs. (40) in the following form

δa = ±2

√(mπ

L

)2

+ |Ka|2, a = p, s, (41)

and the corresponding period Λl of linear corrugation is
given as:

Λl =
π

βa ±
√

(mπ/L)2 + |Ka|2
. (42)

The conditions in Eqs. (35) and (41) for a linear cor-
rugation in the pump field can be combined together to
provide the following formula for the coupling constant
Kp:

|Kp|2 = δ2
nl,q

(
1± 2mπ

|δnl,q|L
)

. (43)

The linear phase mismatch δp is then determined along
the formula in Eq. (41) such that the signs of δnl,q and
δp are the same.

Similarly the conditions for a linear corrugation in the
second-subharmonic field written in Eqs. (38) and (41)
and considered together lead to an expression for the cou-
pling constant Ks:

|Ks|2 =
δ2
nl,q

4

(
1± 4mπ

|δnl,q|L
)

. (44)

The sign of linear phase mismatch δs determined from
Eq. (41) is opposite to that of δnl,q.
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IV. SQUEEZED-LIGHT GENERATION -
NUMERICAL ANALYSIS FOR CW PUMPING

Discussion of squeezed-light generation is decomposed
into three parts. In the first one, we pay a detailed atten-
tion to attainable characteristics of the considered waveg-
uide. The second part is devoted to second-subharmonic
generation, i.e. an incident strong pump field is assumed.
In the third part, a strong incident second-subharmonic
field is assumed, i.e. second-harmonic generation is stud-
ied.

A. Characteristic parameters of the waveguide

We consider a waveguide made of LiNbO3 with length
L = 1 × 10−3 m and width ∆y = 1 × 10−5 m pumped
at the wavelength λp = 0.534 × 10−6 m (λs = 1.064 ×
10−6 m). More details are contained in Appendix A.
We require a single-mode operation at both the pump-
and second-subharmonic-field frequencies that can be
achieved for the thickness t of the waveguide in the range
t ∈ (0.403, 0.544) × 10−6 m [24]. We also neglect losses
in the waveguide that may be caused both by absorption
inside the waveguide and scattering of light that does not
propagate into guided modes.

Values of the natural nonlinear phase mismatch δnl,0

are high (around 1.7 × 106 m−1) in the region of single-
mode operation and depend on the thickness t of the
waveguide (see Fig. 2a). Values of the nonlinear cou-
pling constant Knl,0 depicted in Fig. 2b increase with
the increasing values of the thickness t because of the
thicker the waveguide the more the modes are localized
inside the waveguide and so the greater the overlap of the
nonlinearly interacting field amplitudes. Attainable val-
ues of linear coupling constants Kp and Ks for different
values of thickness t and depth of corrugation tl can be
obtained from Fig. 3. Values of the coupling constants
Kp and Ks for a given thickness t increase monotonously
with the increasing values of the depth of corrugation tl.
For small values of the thickness t, values of the coupling
constant Ks are small because the waveguide is thin for
the second-subharmonic field and so a considerable part
of the field is outside the waveguide and cannot be scat-
tered by the corrugation.

Amplitudes of the dimensionless incident strong
electric-field amplitudes Aab

are determined from the in-
cident power Pab

along the relation:

|Aab
| =

√
Pab

Lβa

h̄ω2
a

, a = p, s, b = F,B. (45)

On the other hand, power P out
ab

of an outgoing field is
given as follows:

P out
ab

=
h̄ω2

a

βaL
|Aab

|2

a)

b)

FIG. 2: Natural nonlinear phase mismatch δnl,0 (a) and ab-
solute value of the nonlinear coupling constant Knl,0 (b) as
they depend on the thickness t of the waveguide are shown in
the region of single-mode operation; constant Knl,0 is deter-
mined for amplitudes that correspond to one pump and one
second-subharmonic photon inside the waveguide.

=
h̄ω2

a

βaL
Nab

, a = p, s, b = F,B; (46)

Nab
denotes the number of photons leaving the waveg-

uide.
New dimensionless parameters are convenient for the

discussion of behavior of the waveguide;

zr = z/L,

Λr
l = Λl/L,Λr

nl,q = Λnl,q/L,

βr
a = Lβa, δr

a = Lδa,Kr
a = LKa, a = p, s,

δr
nl,q = Lδnl,q,K

r
nl,q = LKnl,q. (47)

Applying these parameters the waveguide extends from
zr = 0 to zr = 1. The dimensionless parameters en-
able to understand the behavior of the waveguide as it
depends on the length L using graphs and discussion bel-
low.

B. Second-subharmonic generation

As a reference for the efficiency of squeezed-light gen-
eration we consider the waveguide with periodical poling
and assume that it is pumped by the power of 2 W. The
nonlinear interaction is perfectly phase matched for the
period of poling Λr

nl ≈ 3.552 × 10−3 where we have for
the principal squeeze variances λsF ≈ 0.45 and λpF ≈ 1
(see Fig. 4a). The more distant the value of Λr

nl from the
above-mentioned optimum value is, the larger the non-
linear phase mismatch and the larger the value of the
principal squeeze variance λsF

.
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FIG. 3: Contour plot of the absolute value of pump-field
[second-subharmonic-field] linear coupling constant Kp [Ks]
as it depends on thickness t of the waveguide and depth tl

of linear corrugation is shown in (a) [(b)] in the region of
single-mode operation.

Considering a periodic corrugation in the pump field,
better values of squeezing in the second-subharmonic
field can be reached. The reason is that the corruga-
tion causes scattering of the pump field that leads to
inhomogeneity of the field along the z axis. The nonlin-
ear process then profits from field localization. However,
nonzero values of the nonlinear phase mismatch δnl,1 are
important to exploit this localization because they have
to compensate periodic spatial oscillations caused by the
corrugation (see [48]). A perfect phase matching of all
the processes occurring in the waveguide can be reached
this way.

A typical dependence of the principal squeeze vari-
ance λsF as well as the number NsF of photons leav-
ing the waveguide for the forward-propagating second-
subharmonic field for attainable values of parameters of

a)

b)

FIG. 4: Principal squeeze variances λsF (solid curve) and
λpF (solid curve with ∗) as functions of the period Λr

nl of pol-
ing for second-subharmonic generation (PpF = 2 W, PsF =
1× 10−10 W - a negligible seeding to substitute spontaneous
process in classical equations) (a) and second-harmonic gener-
ation (PpF = 1×10−10 W, PsF = 2 W) (b); to understand the
behavior with respect to the length L, the period Λnl should

be decomposed as Λ0
nl + ∆Λnl, then δr

nl,q ≈ −2πq∆Λr
nl/Λ0

nl
2
,

Λ0
nl = 2πq/(2βs − βp), ∆Λr

nl = L∆Λnl; t = 5 × 10−7 m,
Kr

p = 0, Kr
s = 0, arg(ApF ) = 0, arg(AsF ) = 0, ApB = 0,

AsB = 0; Λ0
nl ≈ 3.552× 10−6 m.

the corrugation is shown in Fig. 5 assuming a fixed value
of the nonlinear phase mismatch δr

nl,1 equal to -10.82
(Λr

nl = 3.53 × 10−3), i.e. it corresponds roughly to the
first local minimum of λsF

in the curve in Fig. 4a. We
can clearly see that an efficient nonlinear interaction oc-
curs in strips that correspond to transmission peaks; the
larger the number m of a transmission peak [see Eq. (40)]
the weaker the effective nonlinear interaction. The neces-
sity to fulfill also the condition for perfect overall phase
matching given in Eq. (35) is evident. The principal
squeeze variance λsF

reaches values around 0.2 inside
the strips around the first several transmission peaks.
The larger the number m of a transmission peak, the
greater values of linear coupling constant Kr

p and linear
phase-mismatch δr

p have to be used to reach high levels
of squeezing. Up to several forward-propagating pho-
tons can be present inside the waveguide (see Fig. 5b)
at a given time instant. This means that the power of
the outgoing field is of the order of 10−8 W (energy of
one second-subharmonic photon inside the waveguide of
thickness t = 5×10−7 m and length L = 1×10−3 m cor-
responds to the output power of 2.58 × 10−8 W). Only
the first and the second transmission peaks can give rea-
sonable values of the power of the outgoing field.

Role of the value of nonlinear phase mismatch δr
nl,1 to

squeezed-light generation is revealed in Fig. 6, where the
principal squeeze variance λsF

as a function of the non-
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FIG. 5: Contour plots of principal squeeze variance λsF (a)
and number NsF of photons leaving the waveguide (b) for
the forward-propagating second-subharmonic field as they de-
pend on parameters |Kr

p | and δr
p of the corrugation in the

pump field; more-less equidistant curves in the graphs indi-
cate positions of transmission peaks [Eq. (40)], the last curve
going up gives the condition in Eq. (35); Λr

nl = 3.53 × 10−3

(δr
nl,1 = −10.82), PpF = 2 W, PsF = 1×10−10 W, arg(Kr

p) =
π/2; values of the other parameters are the same as in Fig. 4.
Triangles in lower right corners with formally zero values in
both graphs lie in the region with an exponential behavior of
classical amplitudes that is not suitable for nonclassical-light
generation.

linear phase mismatch δr
nl,1 under the conditions given in

Eqs. (41) and (43) is drawn for the first two transmission
peaks (m = 1, 2). The larger the value of δr

nl,1 the better
the values of the principal squeeze variance λsF

, but also
the greater the values of linear coupling constant |Kr

p |
and linear phase mismatch δr

p (as shown in Figs 6b and
6c). The smallest values of |Kr

p | and δr
p are obtained when

the generation occurs around the first transmission peak.
From practical point of view, the depth of linear corru-
gation is limited by technological reasons (also validity of

the model has to be judged for greater values of the linear
coupling constant Kr

p) and this means that only smaller
values of the linear coupling constant Kp are available
(see Fig. 3). In order to obtain the best possible value
of the principal squeeze variance λsF the curves in Fig. 6
suggest to work in the first transmission peak and use
the greatest available value of Kr

p (the deepest possible
corrugation). From the curve in Fig. 6b the appropriate
value of the nonlinear phase mismatch δr

nl,1 is determined
and then the curve in Fig. 6c gives a suitable value of the
linear phase mismatch δr

p (and consequently the period
Λl of linear corrugation). Keeping the incident pump-
field power fixed, the depth tl of the corrugation limits
the achievable values of the principal squeeze variance
λsF

; the deeper the corrugation, the better the squeez-
ing. We can roughly say that the appropriate values of
linear coupling constant Kr

p and linear phase mismatch
δr
p are close (or higher) to the value of nonlinear phase

mismatch δr
nl,1 to have an optimum phase matching (see

Figs. 6b,c).
The curves in Fig. 6a also reveal the role of length L of

the waveguide in squeezed-light generation. Because the
nonlinear phase mismatch δnl,1 does not depend on the
length L, the dimensionless nonlinear phase mismatch
δr
nl,1 depicted in Fig. 6a is linearly proportional to the

length L and so the larger the value of length L the lower
the value of the principal squeeze variance λsF

. The anal-
ysis of expressions in Eqs. (41) and (43) shows that in the
limit of large length L, |Kp| → δnl,1 and δp → 2δnl,1. We
note that the distance of the adjacent transmission peaks
in the plane spanned by variables |Kp| and δp behaves as
1/L (see, e.g., graphs in Fig. 5).

In case of the considered LiNbO3 waveguide, values of
the natural nonlinear phase mismatch δnl,0 for the con-
sidered values of thickness t as given in Fig. 2a are so
high that in order to take advantage of scattering on the
corrugation, an additional periodical poling has to be in-
troduced to partially compensate for this mismatch [25].

Usefulness of the corrugation can be demonstrated
when we compare the following three configura-
tions: perfectly quasi-phase matched waveguide, non-
perfectly quasi-phase matched waveguide, and finally
non-perfectly quasi-phase matched waveguide with a
suitable corrugation that compensates for phase mis-
match. The waveguide with a corrugation gives better
values of the principal squeeze variance λsF and also
considerably greater values of the number NsF

of pho-
tons leaving the waveguide in comparison with the per-
fectly quasi-phase-matched waveguide, as documented in
Fig. 7. Also an improvement caused by an introduction of
the corrugation into a non-perfectly quasi-phase-matched
waveguide is worth mentioning.

A linear corrugation can be alternatively introduced
into the second-subharmonic field. Despite the fact that
the second-subharmonic field remains at single photon
level, results obtained for principal squeeze variances
λ and numbers N of photons are comparable to those
achieved with a corrugation in the pump field. Suitable
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a)

b)

c)

FIG. 6: Principal squeeze variance λsF (a), absolute value of
the linear coupling constant Kr

p given by Eq. (43) (b), and
linear phase mismatch δr

p determined along Eq. (41) (c) as
functions of the nonlinear phase mismatch δr

nl,1; first (m=1)
and second (m=2) transmission peaks as well as signs + and
- in Eq. (43) are considered (m = 1+: solid curve with ∗,
m = 1−: solid curve with ¦, m = 2+: solid curve with ◦,
m = 2−: solid curve with4); PpF = 2 W, PsF = 1×10−10 W,
arg(Kr

p) = π/2; values of the other parameters are the same
as in Fig. 4.

conditions are given in Eqs. (38) and (40) in this case.

C. Second-harmonic generation

Second-harmonic generation requires a strong incident
second-subharmonic field. As a reference we consider an
incident power PsF

of the second-subharmonic field to
be 2 W and periodical poling. We have for the principal
squeeze variances λsF

≈ 0.87 and λpF
≈ 0.99 for the

period of poling Λr
nl ≈ 3.552×10−3 that assures a perfect

quasi-phase matching (see Fig. 4b).
The nonlinearly interacting fields behave similarly as

in the case of second-subharmonic generation. If we in-
troduce a linear corrugation into the second-subharmonic
field and set the nonlinear phase mismatch δr

nl,1 equal to
3.53× 10−3 (see Fig. 4b), values of the principal squeeze
variance λsF

approach 0.6 inside the strips in the plane
spanned by variables |Kr

s | and δr
s where the conditions

a)

b)

FIG. 7: Principal squeeze variance λsF (a) and number NsF

of photons leaving the waveguide for the forward-propagating
second-subharmonic field as they depend on the incident
pump-field power PpF under different conditions: perfect
quasi-phase matching (δr

nl,1 = 0) without a corrugation

(solid curve), quasi-phase matching with Λr
nl = 3.53 × 10−3

(δr
nl,1 = −10.82) without a corrugation (solid curve with ¦),

and quasi-phase matching with Λr
nl = 3.53 × 10−3 together

with a corrugation [its parameters are given by the condi-
tions in Eqs. (43) (m = 1) and (35)] (solid curve with ◦);
PpF = 2 W, PsF = 1 × 10−10 W, arg(Kr

p) = π/2; values of
the other parameters are the same as in Fig. 4.

from Eqs. (38) and (40) are fulfilled. The number NsF of
second-subharmonic photons at the output of the waveg-
uide (together with the output power) decreases by an
order of magnitude inside these strips compared to the
incident power as a consequence of transfer of energy
from the strong second-subharmonic field into the pump
field (due to an efficient nonlinear interaction) and also
transfer of energy into the backward-propagating field
(due to scattering) is considerable. Despite this the
squeezed second-subharmonic field remains very strong,
it contains about 106 photons inside the waveguide. An
appropriate choice of the value of nonlinear phase mis-
match δr

nl,1 is governed by the same rules as mentioned
for second-subharmonic generation. The pump field that
is only weakly squeezed for perfect quasi-phase matching
can reach values of the principal squeeze variance λpF

around 0.8 assuming corrugation with parameters given
by Eqs. (38) and (40). The pump field gets a consider-
able amount of energy from the second-subharmonic field
and so typical values of the number NpF

of pump pho-
tons leaving the waveguide can reach 106; i.e. the output
power is of the order of 10−1 W (energy of one pump pho-
ton inside the waveguide of thickness t = 5×10−7 m and
length L = 1× 10−3 m corresponds to the output power
of 5.13× 10−8 W). A detailed behavior of the pump field
with respect to the parameters of the linear corrugation
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FIG. 8: Contour plots of principal squeeze variance λpF (a)
and number NpF of photons leaving the waveguide (b) for
the forward-propagating pump field as they depend on pa-
rameters |Kr

s | and δr
s of the linear corrugation in the second-

subharmonic field; more-less equidistant curves in graphs indi-
cate positions of transmission peaks [Eq. (40)], the last curve
going up is given by Eq. (38); Λr

nl = 3.53 × 10−3 (δr
nl,1 =

−10.82), PpF = 1 × 10−10 W, PsF = 2 W, arg(Kr
s ) = π/2;

values of the other parameters are the same as in Fig. 4. As for
triangles in lower right corners of both graphs with formally
zero values, see caption to Fig. 5.

can be understood from graphs in Fig. 8.
A linear corrugation can also be put into the pump field

and we arrive at qualitatively the same results as if the
corrugation is present in the second-subharmonic field.
For the value of nonlinear phase mismatch δr

nl,1 = −10.82
used above, values of the principal squeeze variance λsF

can reach even 0.3. On the other hand, values of the
principal squeeze variance λpF lie above 0.9.

At the end of discussion we make a note about the
influence of some phases with respect to squeezed-light
generation. It can be easily shown that any solution of

Eqs. (8) depends only on phase ψ = arg(Kp)−2 arg(Ks).
In our numerical investigations, we did not observe any
dependence of numbers N of photons as well as principle
squeeze variances λ on the phase ψ. On the other hand,
these quantities depend weakly on phases arg(AsF ) and
arg(ApF

) of the incident fields. However, this depen-
dence is very weak under the conditions where a strongly
squeezed light is generated.

V. MODEL FOR A MULTI-MODE NONLINEAR
INTERACTION

We generalize the model presented for cw pumping in
Sec. II to multi-mode fields using quantum theory. Be-
cause of the necessity to include also inter-mode disper-
sion, we decompose the electric-field operator amplitudes
Êa (a = p, s) using mode operator amplitudes âa in the
Heisenberg picture [5, 8]:

Êa(x, y, z, t) =
∫ ∞

0

dωaÊa(x, y, z, ωa) exp(−iωat),

(48)

Êa(x, y, z, ωa) = i [âaF (z, ωa)ea(x, y, ωa)
+ âaB

(z, ωa)ea(x, y, ωa)−H.c.] , a = p, s, (49)

where âaF (z, ωa) [âaB (z, ωa)] denotes annihilation oper-
ator of mode with frequency ωa in field a propagating
forward [backward]. We note that mode functions ea de-
rived in Appendix A as well as propagation constants βa

depend on the frequency ωa in the multi-mode model.
Evolution of quantum optical fields inside the studied

waveguide is described using the following momentum
operator Ĝ [8, 20]:

Ĝ(z) =
∑

a=p,s

∑

b=F,B

∫ ∞

0

dωah̄βab
(ωa)â†ab

(z, ωa)âab
(z, ωa)

+

[ ∑
a=p,s

∫ ∞

0

dωah̄Ka(ωa)â†aF
(z, ωa)âaB

(z, ωa) + H.c.

]

−

 ∑

b=F,B

2i

∫ ∞

0

dωs

∫ ∞

0

dω
′
sKnl,q(ωs, ω

′
s)

× â†sb
(z, ωs)â†sb

(z, ω
′
s)âpb

(z, ωs + ω
′
s) + H.c.

]
. (50)

The Heisenberg equations written in Eq. (13) and corre-
sponding to the momentum operator Ĝ in Eq. (50) take
the form:

dâsF
(z, ωs)
dz

= iβs(ωs)âsF
(z, ωs) + iKs(ωs)âsB

(z, ωs)

+ 4
∫ ∞

0

dω
′
sKnl,q(ωs, ω

′
s)âpF

(z, ωs + ω
′
s)â

†
sF

(z, ω
′
s),

dâsB
(z, ωs)
dz

= −iβs(ωs)âsB
(z, ωs)− iK∗

s (ωs)âsF
(z, ωs)

− 4
∫ ∞

0

dω
′
sKnl,q(ωs, ω

′
s)âpB

(z, ωs + ω
′
s)â

†
sB

(z, ω
′
s),
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dâpF
(z, ωp)
dz

= iβp(ωp)âpF
(z, ωp) + iKp(ωp)âpB

(z, ωp)

− 2
∫ ∞

0

dωsK
∗
nl,q(ωs, ωp − ωs)âsF

(z, ωs)âsF
(z, ωp − ωs),

dâpB (z, ωp)
dz

= −iβp(ωp)âpB (z, ωp)− iK∗
p (ωp)âpF (z, ωp)

+ 2
∫ ∞

0

dωsK
∗
nl,q(ωs, ωp − ωs)âsB

(z, ωs)âsB
(z, ωp − ωs).

(51)

Linear coupling constants Ks, Kp and nonlinear coupling
constants Knl,q (q = 0,±1) are given in Eqs. (11) and
(12) and are frequency dependent. We note that the non-
linear coupling constants Knl,q have the following sym-
metry: Knl,q(ωs, ω

′
s) = Knl,q(ω

′
s, ωs).

Creation and annihilation operator amplitudes of the
incident fields are assumed to fulfill boson commutation
relations, i.e.

[âaF (0, ωa), â†a′
F
(0, ωa′)] = δa,a′δ(ωa − ωa′),

[âaB
(L, ωa), â†a′

B
(L, ωa′)] = δa,a′δ(ωa − ωa′),

a = p, s (52)

and the remaining commutators are zero. It can be shown
[49] for quadratic momentum operators Ĝ that also the
output operator amplitudes have to obey boson commu-
tation relations:

[âaF
(L, ωa), â†a′

F
(L, ωa′)] = δa,a′δ(ωa − ωa′),

[âaB (0, ωa), â†a′
B
(0, ωa′)] = δa,a′δ(ωa − ωa′),

a = p, s (53)

and commutators not mentioned in Eqs. (53) are zero.
The nonlinear operator equations written in Eqs. (51)

have one integral of motion that expresses the conserva-
tion law of the overall energy:

d

dz

[∫ ∞

0

dωs â†sF
(z, ωs)âsF (z, ωs)

−
∫ ∞

0

dωs â†sB
(z, ωs)âsB (z, ωs)

+ 2
∫ ∞

0

dωp â†pF
(z, ωp)âpF

(z, ωp)

− 2
∫ ∞

0

dωp â†pB
(z, ωp)âpB

(z, ωp)
]

= 0. (54)

When solving evolution of the nonlinearly interact-
ing fields as described in Eqs. (51) electric-field op-
erator amplitudes ÂsF , ÂsB , ÂpF , and ÂpB in the
interaction representation can be conveniently defined
(âaF

(z, ωa) = ÂaF
(z, ωa) exp[iβa(ωa)z], âaB

(z, ωa) =
ÂaB

(z, ωa) exp[−iβa(ωa)z], a = p, s) transforming the
equations in Eqs. (51) into the form:

dÂsF (z, ωs)
dz

= iKs(ωs) exp[−iδs(ωs)z]ÂsB (z, ωs)

+ 4
∫ ∞

0

dω
′
sKnl,q(ωs, ω

′
s) exp[iδnl,q(ωs, ω

′
s)z]

× ÂpF
(z, ωs + ω

′
s)Â

†
sF

(z, ω
′
s),

dÂsB
(z, ωs)
dz

= −iK∗
s (ωs) exp[iδs(ωs)z]ÂsF

(z, ωs)

− 4
∫ ∞

0

dω
′
sKnl,q(ωs, ω

′
s) exp[−iδnl,q(ωs, ω

′
s)z]

× ÂpB
(z, ωs + ω

′
s)Â

†
sB

(z, ω
′
s),

dÂpF
(z, ωp)
dz

= iKp(ωp) exp[−iδp(ωp)z]ÂpB
(z, ωp)

− 2
∫ ∞

0

dωsK
∗
nl,q(ωs, ωp − ωs) exp[−iδnl,q(ωs, ωp − ωs)z]

× ÂsF
(z, ωs)ÂsF

(z, ωp − ωs),

dÂpB
(z, ωp)
dz

= −iK∗
p (ωp) exp[iδp(ωp)z]ÂpF (z, ωp)

+ 2
∫ ∞

0

dωsK
∗
nl,q(ωs, ωp − ωs) exp[iδnl,q(ωs, ωp − ωs)z]

× ÂsB
(z, ωs)ÂsB

(z, ωp − ωs). (55)

Linear phase mismatches δp, δs and nonlinear phase mis-
matches δnl,q (q = 0,±1) are defined as follows:

δa(ωa) = 2βa(ωa)− 2π

Λl
, a = p, s,

δnl,q(ωs, ω
′
s) = βp(ωs + ω

′
s)− βs(ωs)− βs(ω

′
s) + q

2π

Λnl
.

(56)

It holds that δnl,q(ωs, ω
′
s) = δnl,q(ω

′
s, ωs).

VI. SECOND-SUBHARMONIC GENERATION
WITH A LINEAR CORRUGATION IN A

STRONG PUMP FIELD - PERTURBATION
APPROACH

A strong incident pump field being scattered on a lin-
ear corrugation is considered. We also assume that the
process of second-subharmonic generation is weak and
the generated second-subharmonic field remains at single
photon level. Because the generated second-subharmonic
field is many orders of magnitude weaker than the pump
field, depletion as well as quantum features of the pump
field can be neglected and the last two equations in
Eqs. (51) can be transformed into the equations for
strong amplitudes apF

and apB
:

dapF
(z, ωp)
dz

= iβp(ωp)apF
(z, ωp) + iKp(ωp)apB

(z, ωp),

dapB (z, ωp)
dz

= −iβp(ωp)apB (z, ωp)− iK∗
p (ωp)apF (z, ωp).

(57)

Solution for the forward-propagating pump-field ampli-
tude apF

can be found in the form:

apF
(z, ωp) = exp[iβp(ωp)z] exp(−iδpz/2)
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× [
exp(i∆pz)B+

pF
(ωp) + exp(−i∆pz)B−pF

(ωp)
]
,

(58)

where functions B±pF
(B−pF

= B+∗
pF

) are given by boundary
conditions, i.e. by spectrum of the incident pump pulse.
If the central frequency ω0

p is tuned at a transmission
peak [∆0

pL = mπ, m = 1, 2, . . ., δ0
p = δp(ω0

p)] we may
approximately write:

apF
(z, ωp) = exp[iβp(ωp)z] exp(−iδ0

pz/2)

× [
exp(i∆0

pz)B0+
pF

(ωp) + exp(−i∆0
pz)B0−

pF
(ωp)

]
,

B0+
pF

(ωp) =
2∆0

p + δ0
p

4∆0
p

ApF
(0, ωp); (59)

ApF
(0, ωp) means the incident pump-field amplitude

spectrum.
An operator perturbation solution of the first equation

in Eqs. (51) with the substituted pump-field amplitude
apF

as written in Eq. (59) is obtained in the form:

âsF
(L, ωs) =

∫ ∞

0

dω
′
sU(ωs, ω

′
s)âsF

(0, ω
′
s)

+
∫ ∞

0

dω
′
sV (ωs, ω

′
s)â

†
sF

(0, ω
′
s), (60)

U(ωs, ω
′
s) = δ(ωs − ω

′
s) exp[iβs(ωs)L], (61)

V (ωs, ω
′
s) = −i4Knl,q(ωs, ω

′
s) exp[iβs(ωs)L]

× exp

(
i

[
δnl,q(ωs, ω

′
s)−

δ0
p

2
±∆0

p

]
L

2

)

× L

2
sinc

([
δnl,q(ωs, ω

′
s)−

δ0
p

2
±∆0

p

]
L

2

)

× B0±
pF

(ωs + ω
′
s); (62)

sinc(x) = sin(x)/x. Two different solutions are written
in Eqs. (60—62): one solution is appropriate under the
condition δnl,q(ωs, ω

′
s)−δ0

p/2+∆0
p ≈ 0 whereas the second

one is valid when δnl,q(ωs, ω
′
s)− δ0

p/2−∆0
p ≈ 0. We note

that one of these two conditions has to be fulfilled in order
to observe an efficient second-subharmonic generation as
has been shown for cw case in Sec. III.

In our first-order perturbation approach, the Green
function U as given in Eq. (61) describes free-field evo-
lution whereas the Green function V in Eq. (62) charac-
terizes properties of a generated photon pair. The Green
function V is closely related to the so-called two-photon
amplitude Φ introduced in the description of spontaneous
parametric down-conversion [50–52]. Similarly as a two-
photon amplitude Φ the Green function V can be decom-
posed into the Schmidt decomposition that gives typical
eigenmodes of the nonlinear interaction. This decomposi-
tion can be reached even analytically under the following
conditions. We first assume that the nonlinear compling
constant Knl,q does not depend on frequencies and ex-
press the propagation constants βa in Taylor series:

βa(ωa) = β0
a + β1,a(ωa − ω0

a) + β2,a(ωa − ω0
a)2/2;

β0
a = βa(ω0

a),

βi,a =
diβa

dωi
a

∣∣∣∣
ωa=ω0

a

, i = 1, 2; a = p, s. (63)

The sinc function occurring in Eq. (62) can be approxi-
mated by a gaussian function along the relation:

sinc
[
α0 + α1(ωs + ω

′
s − ω0

p) + α2(ωs + ω
′
s − ω0

p)2

+α3(ωs − ω
′
s)

2
]
≈

exp

[
−|α3|

3
(ωs − ω

′
s)

2 − α2
1

5

(
ωs + ω

′
s − ω0

p +
α0

α1

)2
]

,

(64)

where α0, α1, α2, and α3 are constants and α2 can be
neglected for values of parameters typical for the consid-
ered waveguide. An incident gaussian pump pulse with
such phase modulation along the spectrum that phases
of different frequencies are equal in the middle of the
waveguide is further assumed [34], i.e.

ApF (0, ωp) = ApF exp

(
−i[βp(ωp)− β0

p ]L
2

)

×
√

τp√
2π

3 exp

[
−τ2

p (ωp − ω0
p)2

4

]
(65)

and τp denotes pump-pulse duration. Constant ApF
in

Eq. (65) gives strength of the pump pulse and is deter-
mined from the incident pump power PpF

along the for-
mula in Eq. (45). We note that

∫∞
0

dωp|ApF
(0, ωp)|2 =

|ApF |2/2π. The Green function V finally gets the gaus-
sian form:

V (ωs, ω
′
s) = −iK0

nl,qL
2∆0

p + δ0
p

2∆0
p

√
τp√
2π

3

× exp

[
i

(
2πq

Λnl
− δ0

p

2
±∆0

p

)
L

2

]
Φ(ωs, ω

′
s), (66)

Φ(ωs, ω
′
s) = exp

(
i
[
βs(ωs)− βs(ω

′
s)

] L

2

)
Φ̃(ωs, ω

′
s),

(67)

Φ̃(ωs, ω
′
s) = exp

[
− (ωs − ω

′
s)

2

∆2−

]

× exp

(
− [ωs + ω

′
s − ω0

p + δ0
nl,q/(β1,p − β1,s)]2

∆2
+

)
; (68)

K0
nl,q = Knl,q(ω0

s , ω0
s). Parameters ∆+ and ∆− of the

Green function V are given as:

1
∆2−

=
β2,sL

24
,

1
∆2

+

=
(β1,p − β1,s)2L2

20
+

τ2
p

4
. (69)
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The gaussian function Φ̃ given in Eq. (68) can be de-
composed into the Schmidt decomposition [34, 54]:

Φ̃(ωs, ω
′
s) =

∞∑
n=0

µnφ̃n(ωs)φ̃n(ω
′
s). (70)

Eigenvalues µn are given as follows:

µn = 2
√

π

∆+∆−
θn/2, (71)

θ =
(

∆+ −∆−
∆+ + ∆−

)2

. (72)

Eigenmode functions φ̃n can be expressed in terms of the
Hermite polynomials Hn:

φ̃n(ωs) =
√

τs

2nn!
√

π
exp

[−τ2
s (ωs − ω̄s)2

]

×Hn(τs[ωs − ω̄s]), (73)

τs =

√
1− θ2

θ
,

ω̄s =
ω0

p

2
− δ0

nl,q

2(β1,p − β1,s)
. (74)

For the considered waveguide, ∆+ ¿ ∆− and thus a
typical time constant τs defined in Eqs. (74) can be ap-
proximated as:

τs ≈ 8
∆+

∆−
. (75)

Taking into account inter-mode phase modulation as it
appears in Eq. (67) eigenmode functions φn of the non-
linear interaction are given as folows:

φ(ωs) = exp[iβs(ωs)L/2]φ̃(ωs) (76)

and the function Φ written in Eq. (67) attains its Schmidt
decomposition [34]:

Φ(ωs, ω
′
s) =

∞∑
n=0

µnφn(ωs)φ∗n(ω
′
s). (77)

The Schmidt decomposition of function Φ written in
Eq. (77) suggets to introduce new discrete sets of annihi-
lation and creation operator amplitudes that diagonalize
the nonlinear interaction:

âin
sF ,n =

∫ ∞

0

dωsφn(ωs)âsF
(0, ωs), (78)

âout
sF ,n =

∫ ∞

0

dωsφ
∗
n(ωs)âsF

(L, ωs). (79)

Because functions φn (φ∗n) form an orthonormal basis,
operators âin

sF ,n and âin†
sF ,n (âout

sF ,n and âout†
sF ,n) fulfill the

usual boson commutation relations.
Enhancement of the nonlinear interaction caused by

scattering of the pump field on a linear corrugation is

a)

b)

FIG. 9: Absolute value of the linear coupling constant Kr
p

(a) and relative linear phase mismatch δr
p − δr,0

p (b) for the
pump field as they depend on the relative frequency ωp/ω0

p,
δr,0

p = Lδp(ω0
p); t = 5× 10−7 m, tl = 5× 10−8 m.

contained in a multiplicative factor (2∆0
p + δ0

p)/(4∆0
p) in

Eq. (66) that can be expressed as follows:

M =
2∆0

p + δ0
p

4∆0
p

=
1
2

+
1
2

√
|K0

p |2 + (mπ/L)2

(mπ/L)2
. (80)

The greatest value of enhancement factor M is reached
at the first transmission peak (m = 1) and the greater
the value of linear coupling constant K0

p the greater the
value of enhancement factorM. On the other hand there
is no enhancement in the limit m →∞, i.e. the effect of
pump-field localization is lost.

VII. SECOND-SUBHARMONIC GENERATION
WITH A LINEAR CORRUGATION IN A

STRONG PUMP FIELD - NON-PERTURBATION
APPROACH

Linear coupling constants Kp, Ks and nonlinear cou-
pling constants Knl,q depend only weakly on frequen-
cies in a relatively broad range. This is documented in
Figs. 9a, 10a, and 11a where the dimensionless constants
[for their definitions, see Eqs. (47)] Kr

s , Kr
p , and Kr

nl,1, re-
spectively, are plotted as functions of frequencies in the
range of cca 20 nm for typical values of the waveguide
parameters.

If inter-mode dispersion is omitted, equations for op-
erator amplitudes Âab

(z, ω) given in Eqs. (55) can be
decoupled using Fourier transform:

Âab
(z, ωa) =

1
2π

∫ ∞

−∞
dτaÂab

(z, τ) exp(iωaτa). (81)
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a)

b)

FIG. 10: Absolute value of the linear coupling constant
Kr

s (a) and relative linear phase mismatch δr
s − δr,0

s (b) for
the second-subharmonic field as functions of the relative fre-
quency ωs/ω0

p, δr,0
s = Lδs(ω

0
s); values of parameters are the

same as in Fig. 9.

The system of equations in Eqs. (55) attains the following
form after Fourier transform:

dÂsF (z, τ)
dz

=

4K0
nl,q exp(iδ0

nl,qz)ÂpF
(z, τ)Â†sF

(z, τ),

dÂsB
(z, τ)

dz
=

−4K0
nl,q exp(−iδ0

nl,qz)ÂpB (z, τ)Â†sB
(z, τ),

dÂpF (z, τ)
dz

= iK0
p exp(−iδ0

pz)ÂpB
(z, τ)

− 2K0∗
nl,q exp(−iδ0

nl,qz)Â2
sF

(z, τ),

dÂpB (z, τ)
dz

= −iK0∗
p exp(iδ0

pz)ÂpF (z, τ)

+ 2K0∗
nl,q exp(iδ0

nl,qz)Â2
sB

(z, τ); (82)

K0
a = Ka(ω0

a), δ0
a = δa(ω0

a) (a = p, s), K0
nl,q =

Knl,q(ω0
s , ω0

s), and δ0
nl,q = δnl,q(ω0

s , ω0
s). A suitable range

of frequencies in which this approximation is valid can be
guessed from the curves in Figs. 9b, 10b, and 11b showing
the dependence of relative pump-field linear dephasing
δr
p − δr,0

p , second-subharmonic linear dephasing δr
s − δr,0

s ,
and nonlinear dephasing δr

nl,1−δr,0
nl,1, respectively, on fre-

quencies. The requirement to neglect inter-mode dispe-
sion limits the length L of waveguide to smaller values.

If the incident pump field is strong, its depletion due
to nonlinear interaction can be omitted. Solution of the
last two equations in Eqs. (82) considered as equations
for classical amplitudes ApF

and ApB
can then be found
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FIG. 11: Contour plots of the absolute value of nonlinear
coupling constant Kr

nl,1 (a) and relative nonlinear phase mis-

match δr
nl,1 − δr,0

nl,1 (b) as they depend on relative frequen-

cies ωs/ω0
p and ω

′
s/ω0

p. Values are shown only in the area

|ωs + ω
′
s − ω0

p| < ∆ωp, where ∆ωp gives a maximum al-
lowed width of the pump-field spectrum, i.e. the black lower
left and upper right triangles give no information. δr,0

nl,1 =

Lδnl,1(ω
0
s , ω0

s); values of parameters are the same as in Fig. 9.

in a simple analytical form for transmission peaks:

ApF
(z, τp) = exp(−iδ0

pz/2)

× [
exp(i∆0

pz)B0+
pF

(τp) + exp(−i∆0
pz)B0−

pF
(τp)

]
,

B0+
pF

(τp) = MApF (0, τp). (83)

Symbol ApF (0, τp) denotes the Fourier transform of inci-
dent pump-field amplitude spectrum ApF

(0, ωp) and the
enhancement factor M is defined in Eq. (80).

The first operator equation in Eqs. (82) can be rewrit-
ten for two resonant conditions indicated in the expres-
sion for amplitude ApF (z, τ) in Eq. (83) as follows:

dÂsF (z, τ)
dz

= 4K0
nl,qB0±

pF
(τ)
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× exp[i(δ0
nl,q − δ0

p/2±∆0
p)z]Â†sF

(z, τ). (84)

Substitution ÂsF
(z, τ) = ÂsF

(z, τ) exp[i(δ0
nl,q/2− δ0

p/4±
∆0

p/2)z], Â†sF
(z, τ) = Â†sF

(z, τ) exp[−i(δ0
nl,q/2 − δ0

p/4 ±
∆0

p/2)z] in Eq. (84) leads to differential equations with
constant coefficients for operator amplitudes ÂsF

and
Â†sF

that allow us to find solution of Eq. (84):

ÂsF
(L, τ) = U(τ)ÂsF

(0, τ) + V (τ)Â†sF
(0, τ), (85)

U(τ) =
1
2

exp
(

i
Ω±L

2

)

×
[(

1− iΩ±

2λ±(τ)

)
exp[λ±(τ)L]

+
(

1 +
iΩ±

2λ±(τ)

)
exp[−λ±(τ)L]

]
, (86)

V (τ) =
K±(τ)
2λ±(τ)

exp
(

i
Ω±L

2

)

× [
exp[λ±(τ)L]− exp[−λ±(τ)L]

]
. (87)

Phase mismatches Ω±, nonlinear coupling constants K±,
and eigenvalues λ± are given by the following formulas:

Ω± = δ0
nl,q − δ0

p/2±∆0
p,

K±(τ) = K0
nl,q

2∆0
p + δ0

p

∆0
p

ApF (0, τ),

λ±(τ) =
√
|K±(τ)|2 − Ω±2/4. (88)

Inverse Fourier transform of the expression for oper-
ator amplitude ÂsF

(L, τ) in Eq. (85) provides the op-
erator amplitude ÂsF (L, ωs) and, after returning from
the interaction representation, the following expression
for the output second-subharmonic operator amplitude
âsF

(L, ωs) is reached:

âsF
(L, ωs) = exp[iβ(ωs)L]

×
[∫ ∞

0

dω
′
sU(ωs − ω

′
s)ÂsF

(0, ω
′
s)

+
∫ ∞

0

dω
′
sV (ωs + ω

′
s)Â

†
sF

(0, ω
′
s)

]
. (89)

Functions U(ω) and V (ω) are given by inverse Fourier
transform of the expressions occurring in Eqs. (86) and
(87) and can be found numerically.

The general expression for continuous output operator
amplitudes âsF (L, ωs) as it occurs in Eq. (60) has to be
discretized in order to investigate the model numerically.
We introduce discrete mode operator amplitudes âsF ,i

that are distant by ∆ω, i.e.

âsF ,i(z) =
√

∆ω âsF
(z, ω0

s + i∆ω). (90)

The Green functions U and V are then transformed into
matrices U and V:

Uij = ∆ω U(ω0
s + i∆ω, ω0

s + j∆ω),

Vij = ∆ω V (ω0
s + i∆ω, ω0

s + j∆ω). (91)

Operator amplitudes âsF ,i defined in Eq. (90) obey the
usual boson commutation relations instead of those writ-
ten in Eq. (53). Transformation written in Eq. (60)
between the input second-subharmonic operator ampli-
tudes âin

sF ,i, âin†
sF ,i and output second-subharmonic oper-

ator amplitudes âout
sF ,i, âout†

sF ,i can, after discretization, be
written in the matrix form:

âout
sF

= Uâin
sF

+ Vâin†
sF

. (92)

Vectors âin
sF

and âout
sF

are composed of operator ampli-
tudes âin

sF ,i and âout
sF ,i, respectively.

Because the input operator amplitudes âin
sF ,i, âin†

sF ,i as
well as the output operator amplitudes âout

sF ,i, âout†
sF ,i ful-

fill boson commutation relations the transformation writ-
ten in Eq. (92) represents the Bogoljubov transformation.
This means that matrices U and V can be decomposed
using the Bloch—Messiah reduction [33, 34]:

U = XΛUY†,
V = XΛV YT , (93)

where †means hermitian conjugated matrix and T stands
for matrix transposition. Matrices ΛU and ΛV are diag-
onal and contain nonnegative eigenvalues of the decom-
position. Matrix Y (X) in Eq. (93) contains the right
(left) eigenvectors.

Eigenvectors defined by the Bloch-Messiah reduction
give typical modes of the nonlinear interaction and rep-
resent a discrete form of eigenmode functions φn found
in Eq. (76) in analytical approach of Sec. VI.

Coefficents Bn and Cn of the generalized superposition
of signal and noise [8] valid for the nth eigenmode and de-
fined in Eqs. (24) can be expressed in terms of eigenvalues
of the decomposition (an incident second-subharmonic
field in vacuum state is assumed):

Bn = (ΛV )2nn ,

Cn = (ΛU )nn (ΛV )nn . (94)

The second-subharmonic principal squeeze variance
λsF ,n of eigenmode n is then determined along the ex-
pression:

λsF ,n = 1 + 2 (ΛV )nn [(ΛV )nn − (ΛU )nn] . (95)

The number NsF ,n of photons leaving the waveg-
uide in eigenmode n is given by a simple formula
(NsF

= 〈Â†sF
ÂsF

〉, averaging is over an incident second-
subharmonic vacuum state):

NsF ,n = (ΛV )2nn . (96)

Importance of the Bloch-Messiah reduction in investi-
gations of squeezing is emphasized by the fact that an
eigenmode with the lowest value of the principal squeeze
variance λsF ,i represents the solution of the optimiza-
tion problem for a suitable spectral profile of a mode
that gives the best possible amount of squeezing (see Ap-
pendix B).
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FIG. 12: Enhancement factor M as a function of the depth tl

of linear corrugation is plotted for the first five transmission
peaks: m = 1 (solid curve), 2 (solid curve with ◦), 3 (solid
curve with ∗), 4 (solid curve with 4), and 5 (solid curve with
¦); t = 5× 10−7 m.

VIII. SQUEEZED-LIGHT GENERATION -
NUMERICAL ANALYSIS FOR PULSED

PUMPING

Benefit of a linear corrugation present in the pump field
in squeezed-light generation can be roughly judged using
the enhancement factor M defined in Eq. (80). Values
of the enhancement factor M around 4 can be reached
in the studied waveguide for the first transmission peak,
as documented in Fig. 12.

A detailed analysis of squeezed-light generation in
pulsed regime is given for fixed values of the depths
of waveguide (t = 5 × 10−7 m) and linear corrugation
(tl = 5 × 10−8 m). The value of enhancement factor M
equals cca 1.5 for the first transmission peak (see Fig. 12).
A suitable value of the pump-field linear phase mismatch
δ0
p is given along the formula in Eq. (41) knowing the

value of pump-field linear coupling constant K0
p . It de-

pends on the number m counting transmission peaks.
The condition in Eq. (35) then provides an optimum
value for the nonlinear phase mismatch δ0

nl,q:

δ0
nl,q =

δ0
p

2
±

√
(δ0

p)2

4
− |K0

p |2. (97)

In Eqs. (41) and (97) there exist four possible combi-
nations of signs. As for squeezing, condition with both
signs + gives the same result as that with both signs -.
Similarly, conditions with one sign + and one sign - lead
to the same amount of squeezing. In our case, the con-
ditions with one sign + and the other sign - give better
values of the principal squeeze variance λsF

and that is
why we consider them in the following discussion.

Gaussian spectrum ApF
(0, ωp) of the incident pump

pulse is assumed. Its Fourier transform takes the form:

ApF (0, τ) =

√ √
2√

πτp
exp

[
−(1 + iap)

τ2

τ2
p

]
, (98)

where τp means pump-pulse duration and ap stands for
chirp parameter.
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FIG. 13: Contour plot of the principal squeeze variance λsF ,n

as a function of incident pump power PpF and mode number
n; τp = 1 × 10−13 s, values of the other parameters are the
same as in Fig. 12.

In order to observe squeezing in pulsed regime the right
choice of eigenmodes is crutial. It occurs that there typ-
ically exist several or maximally several tens of eigen-
modes that can be considerably squeezed. Values of the
principal squeeze variances λsF ,n of these modes decrease
with the increasing incident pump-field power PpF , as
shown in Fig. 13 for 100-fs pump pulse. Measurement
of squeezing in the lowest modes can be reached using
a suitable profile of a local oscillator in homodyne de-
tection. Eigenmode functions φn of the first four modes
are depicted in Fig. 14. Amplitudes of the functions φn

with even numbers n have maximum at the central fre-
quency ω0

s whereas those with odd numbers n are zero.
The larger the mode number n the faster the oscillations
along the frequency axis ωs. The eigenmode functions φn

plotted in Fig. 14 are not damped as a consequence of ne-
glecting inter-mode dispersion. As the analytical results
given in Eqs. (73) and (76) suggest the inclusion of inter-
mode dispersion leads to damped eigenmode functions φn

with a typical time constant τs written in Eq. (74). We
note that the Bloch-Messiah reduction given in Eq. (93)
can be done such that the left and right eigenvectors
(contained in matrices X and Y) coincide.

Shortening of the pump pulse keeping its energy fixed
results in lower values of the principal squeeze variances
λsF ,n (see Fig. 15). This reflects the fact that shortening
of the pump pulse leads to concentration of its energy
into a smaller area inside the nonlinear medium and this
increases efficiency of the nonlinear process. Lower val-
ues of the principal squeeze variances λsF ,n then natu-
rally occur. Alternatively we may argue that the shorter
the pump-pulse duration τp the broader the pump-pulse
spectrum ApF

(0, ωp) and also the better the ability to
excite the lowest eigenvectors φn having the lowest val-
ues of λsF ,n. In cw limit (τp → ∞), the value of λsF ,0

belonging to the lowest eigenmode equals cca 0.9 when
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a)

b)

FIG. 14: Amplitude squared |φn|2 (a) and phase arg(φn) (b)
of the first four eigenmode functions φn as they depend on
the normalized frequency ωs/ω0

p; n=1 (solid curve with ◦), 2
(solid curve with ∗), 3 (solid curve with 4), and 4 (solid curve
with ¦); τp = 1 × 10−13 s, PpF = 2 W, values of the other
parameters are the same as in Fig. 12.
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FIG. 15: Contour plot of the principal squeeze variance λsF ,n

as it depends on the pump-pulse duration τp and mode num-
ber n; PpF = 2 W, values of the other parameters are the
same as in Fig. 12.

pumped by the power of 2 W. On the other hand, cw
model discussed in Sec. IV gives the value of λsF

cca 0.3,
i.e. cw model predicts higher squeezing of the second-
subharmonic field. The main difference between cw and
pulsed models is that energy converted from the pump
field goes into many modes of the second-subharmonic
field in the pulsed model whereas there is only one (effec-
tive) mode in the second-subharmonic field in cw model.
Thus many modes in the pulsed model compete and as
a consequence they cannot reach such low values of the
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FIG. 16: Contour plots of the principal squeeze variance λsF ,0

(a) and number NsF ,0 of photons leaving the waveguide (b)
as they depend on incident pump puwer PpF and pump-pulse
duration τp for n = 0. Logarithmic scale is used on the z axis
in (b). Values of parameters are the same as in Fig. 12.

principal squeeze variance λsF
as those provided by cw

model.
Only the lowest eigenmode can be measured in op-

timum homodyne detection in which a local oscillator
has shape of the eigenmode function φ0. Attainable val-
ues of the principal squeeze variance λsF ,0 for a broad
range of values of pump-pulse duration τp and incident
pump-pulse power PpF

are shown in Fig. 16a. The num-
ber NsF ,0 of photons leaving the waveguide depicted
in Fig. 16b clearly shows, after comparison with the
graph in Fig. 16a, that the better the conversion of en-
ergy into the lowest eigenmode the better the squeez-
ing in this mode. For example, an incident pump pulse
having 100 fs and power of 2 W generates a second-
subharmonic field with the lowest eigenmode reaching
the value λsF ,0 = 0.65.
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The obtained results show that the waveguide made of
LiNbO3 can produce pulsed squeezed light being emit-
ted in the process of second-subharmonic generation. A
linear periodic corrugation with appropriate parameters
and sensitive to a pump field enhances considerably the
nonlinear process.

The analyzed waveguide can serve also as a source of
light with sub-Poissonian photon-number statistics. Ori-
gin of these nonclassical states having suppressed fluc-
tuations in their photon numbers lies in nonlinear inter-
action, similarly as in the case of squeezed-light genera-
tion. Suitable conditions for generation of light with sub-
Poissonian photon-number statistics are similar to those
needed for observation of squeezed light and analyzed in
detail in the report. This similarity has been elucidated
in detail in [45, 46] for three-mode interaction. It allows
to use directly the results obtained for squeezed light also
in the analysis of suitable conditions for the generation
of light with sub-Poissonian photon-number statistics.

IX. CONCLUSIONS

We have shown that an additional scattering of two
nonlinearly interacting optical fields caused by a small
linear periodic corrugation at the surface of a waveguide
can lead to an enhancement of the nonlinear process thus
resulting in higher generation rates and better values of
squeezing. To observe this effect the natural nonlinear
phase mismatch has to be nonzero in order to match with
periodic oscillations caused by scattering at the corruga-
tion. Under these conditions, better values of squeezing
as well as higher values of intensities of both interacting
fields (pump and second-subharmonic) can be reached in
comparison with a perfectly quasi-phase-matched waveg-
uide. A linear corrugation can be designed to match ei-
ther the pump or the second-subharmonic field, or even
both of them. Origin of the enhancement of nonlinear
interaction lies in constructive interference of scattered
light leading to spatial localization. Optimum conditions
for this enhancement have been found approximately us-
ing analytical approach and confirmed numerically. In
practise, the best results are reached with the deepest
possible corrugation. Periods of linear corrugation and
periodical poling are then determined from the model.
In pulsed regime a suitable choice of eigenmodes in the
second-subharmonic field is crutial to reach high levels
of squeezing. The shorter the pump pulse the better the
values of squeezing.

The obtained results have shown that nonlinear planar
waveguides with periodically corrugated surfaces repre-
sent a promising source of squeezed light for integrated
optoelectronics under the conditions excluding nonlinear
medium embedded inside a cavity.

APPENDIX A: MODES OF AN ANISOTROPIC
WAVEGUIDE

Mode of the considered waveguide [53] depicted in
Fig. 1 is given as a solution of the wave equation written
in Eq. (7). The waveguide is made of LiNbO3 crystal us-
ing the method of proton exchange. The crystallographic
z axis coincides with the x axis of the coordinate system
(see Fig. 1). Ordinary (ns,o) and extraordinary (ns,e) in-
dices of refraction of LiNbO3 valid for the substrate and
used in calculations are given as:

n2
s,a = Aa +

Ba

λ2 − Ca
−Daλ2, a = o, e,

Ao = 4.91300, Bo = 0.118717,

Co = 0.045932, Do = 0.0278,

Ae = 4.57906, Be = 0.099318,

Ce = 0.042286, De = 0.0224; (A1)

wavelength λ is in µm. After proton exchange, ordinary
(nw,o) and extraordinary (nw,e) indices of refraction of
LiNbO3 characterizing the waveguide are reached:

nw,o = ns,o − 1
3
δn,

nw,e = ns,e + δn,

(δn)2 = A1 +
B1

λ2 − C1
−D1λ

2;

A1 = 0.007596, B1 = 0.001129,

C1 = 0.116926, D1 = −0.0003126. (A2)

We assume that air is present above the waveguide, i.e.:

nu = 1. (A3)

Because only the extraordinary index of refraction
of LiNbO3 increases during proton exchange, only TM
waves can be guided. For this reason, instead of solving
Eq. (7) for x and z components of the electric-field mode
functions ea, we solve the following equation for the only
nonzero y component of the magnetic-field mode func-
tions ha(x) (fields are assumed to be homogeneous along
the y axis) [41]:

d2ha(x)
dx2

+
[
− ε̄zz(x, ωa)

ε̄xx(x, ωa)
β2

a +
ε̄zz(x, ωa)ω2

a

c2

]
ha(x) = 0.

(A4)

Solution of Eq. (A4) for the y component of magnetic-
field mode function ha(x) (a = p, s) can be written as:

[ha(x)]y = −Ca
ha

q̃a
exp(−qx), x > 0;

= Ca

[
−ha

q̃a
cos(hax) + sin(hax)

]
, 0 < x < −t;

= −Ca

[
ha

q̃a
cos(hat) + sin(hat)

]
exp(pat)

× exp(pax), x < −t; (A5)
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where Ca denotes a normalization constant. We have the
following expressions for coefficients ha, qa, pa, p̃a, and
q̃a for the considered orientation of LiNbO3:

ha =

√(
nw,o(ωa)ωa

c

)2

−
(

nw,o(ωa)
nw,e(ωa)

βa

)2

,

qa =

√
β2

a −
(nuωa

c

)2

,

pa =

√(
ns,o(ωa)
ns,e(ωa)

βa

)2

−
(

ns,o(ωa)ωa

c

)2

,

p̃a =
n2

w,o(ωa)
n2

s,o(ωa)
pa,

q̃a =
n2

w,o(ωa)
n2

u

qa. (A6)

Solution written in Eq. (A5) holds provided that the fol-
lowing dispersion relation giving the propagation con-
stant βa as a function of the frequency ωa is valid:

tan(hat) =
ha(p̃a + q̃a)
h2

a − p̃aq̃a
. (A7)

We note that possible solutions of Eq. (A7) for the prop-
agation constant βa lie in the interval ns,e(ωa)ωa/c ≤
βa ≤ nw,e(ωa)ωa/c.

Components of the electric-field mode function ea(x)
can be derived from the magnetic-field mode functions
ha(x) along the relations:

[ea(x)]x =
βa

ωaε0ε̄xx(x, ωa)
[ha(x)]y,

[ea(x)]y = 0,

[ea(x)]z = − i

ωaε0ε̄zz(x, ωa)
d[ha(x)]y

dx
. (A8)

The normalization constants Ca occurring in Eqs. (A5)
are determined from the condition that the mode func-
tions ea(x) describe one photon with energy h̄ωa inside
the waveguide (of length L and thickness ∆y):

2ε0∆yL

∫ ∞

−∞
dx

[
ε̄xx(x, ωa) |[ea(x)]x|2

+ ε̄zz(x, ωa) |[ea(x)]z|2
]

= h̄ωa. (A9)

Corrugation on the surface causes periodic changes of
values of permittivity ε for x ∈ (0,−tl) (see Fig. 1) and
we have ε±1 = i(ε̄−1)/(πε̄) in this case using Eqs. (2) and
(3). If the waveguide is periodically poled d±1 = −2i/πd
in Eq. (5) and the remaining coefficients may be omitted.
Using the electric-field mode functions ea determined in
Eqs. (A8), linear (Ks, Kp) and nonlinear (Knl,0, Knl,±1)
coupling constants defined in Eqs. (11) and (12) can be
rearranged into the form:

Ka =
iω2

a

2πc2βa

[
n2

w,e(ωa)− 1
n2

w,e(ωa)

∫ 0

−tl

dx |[ea(x)]x|2

+
n2

w,o(ωa)− 1
n2

w,o(ωa)

∫ 0

−tl

dx |[ea(x)]z|2
]

×
[∫ ∞

−∞
dx (|[ea(x)]x|2 + |[ea(x)]z|2)

]−1

,

a = p, s, (A10)

Knl,0 =
iω2

s

2c2βs

∫ 0

−∞
dxd · ep(x)e∗s(x)e∗s(x)

×
[∫ ∞

−∞
dx (|[es(x)]x|2 + |[es(x)]z|2)

]−1

,

(A11)

Knl,±1 = −2i

π
Knl,0. (A12)

Nonzero coefficients of the nonlinear tensor d of
LiNbO3 used in calculations are the following:

dzzz = −dzyy = −dyyz = 3.1× 10−12mV−1,

dxyy = dxzz = dzzx = dyyx = 5.87× 10−12mV−1,

dxxx = 41.05× 10−12mV−1. (A13)

APPENDIX B: AN OPTIMUM MODE FOR
PULSED SQUEEZED LIGHT

We look for a suitable linear combination of output
operator amplitudes âout

sF ,i that minimizes the value of
principal squeeze variance λsF

[54]:

âout
sF

=
∑

i

tiâ
out
sF ,i. (B1)

Coefficients ti fulfill the normalization condition∑
i |ti|2 = 1. Using Eqs. (24) and (26) the principal

squeeze variance λsF as a function of ti and t∗i can be
expressed in the following form:

λsF
(t, t∗) = 1 + 2t†W1t− 2|tW2t|. (B2)

Vector t occurring in Eq. (B2) is composed of coefficients
ti. Matrices W1 and W2 are defined as:

W1 = V∗VT ,

W2 = UVT , (B3)

where the matrices U and V are given in Eq. (91).
Instead of using coefficients ti, we define new coeffi-

cients si along the relation:

s = t exp(−iϕ/2), exp(iϕ) =
tT Wt
|tT Wt| . (B4)

Minimum value of the principal squeeze variance λsF
is

reached for the values of coefficients si and s∗i that min-
imize the function f :

f(s, s∗) = 1 + 2s†W1s− 2sW2s− µs† · s, (B5)
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µ denotes a Lagrange multiplier for the condition s† · s =
1.

Derivation of the function f given in Eq. (B5) with
respect to coefficients s∗i results in the condition:

2W1s = µs. (B6)

This condition can be rearranged using Eqs. (B3):

VV†s∗ =
µ

2
s∗. (B7)

On the other hand, the Bloch-Messiah reduction of ma-
trix V in Eq. (93) provides the formula

VV†Xi = (ΛV)2ii Xi (B8)

valid for ith eigenvalue (ΛV)ii and eigenvector Xi. Com-
parison of Eqs. (B7) and (B8) leads to the conclusion that
the complex conjugated vector s∗ coincides with the ith
eigenvector Xi and the Lagrange multiplier µ fulfills the
relation µ = 2(ΛV)2ii.

Because we look for a minimum value of the principal
squeeze variance λsF

the appropriate mode is character-
ized by the largest eigenvalue (ΛV)ii [compare Eq. (95)].

This mode has also to fulfill the condition obtained by
derivating the function f written in Eq. (B5) with respect
to coefficients si:

2s†W1 − 2sT W2 − 2W2s− µs† = 0. (B9)

The use of expresions in Eqs. (B3) and (B6) transforms
Eq. (B9) into the final form:

VUT s + sT UVT = 0. (B10)
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